Computational Complexity of Piano-Hinged Dissections

نویسندگان

  • Zachary Abel
  • Erik D. Demaine
  • Martin L. Demaine
  • Takashi Horiyama
  • Ryuhei Uehara
چکیده

We prove NP-completeness of deciding whether a given loop of colored right isosceles triangles, hinged together at edges, can be folded into a specified rectangular three-color pattern. By contrast, the same problem becomes polynomially solvable with one color or when the target shape is a tree-shaped polyomino.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Manifold Beauty of Piano-hinged Dissections

A geometric dissection is a cutting of one geometric figure into pieces that we can rearrange to form another. For some dissections, it is possible to hinge the pieces together, so that we can flip the pieces one way on the hinges to form one figure, and flip them another way to form the other figure. When the hinge connects two pieces along a shared edge in both target figures, the movement co...

متن کامل

Polyhedral Characterization of Reversible Hinged Dissections

We prove that two polygons A and B have a reversible hinged dissection (a chain hinged dissection that reverses inside and outside boundaries when folding between A and B) if and only if A and B are two non-crossing nets of a common polyhedron. Furthermore, monotone hinged dissections (where all hinges rotate in the same direction when changing from A to B) correspond exactly to non-crossing ne...

متن کامل

My Parade of Algorithmic Mathematical Art

Animations are discussed for a range of geometric dissections. These include a variety of twist-hinged dissections, some swing-hinged dissections, dissections of squares and cubes corresponding to a certain integer identities, folding dissections of multi-level regular polygons, and folding dissections of multi-level polyominoes. Artistic issues pertaining to these dissections and animations ar...

متن کامل

A laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir

The piano key weir (PKW) is a type of nonlinear control structure that can be used to increase unit discharge over linear overflow weir geometries, particularly when the weir footprint area is restricted To predict the outflow passing over a piano key weir, the discharge coefficient in the general equation of weir needs to be known. This paper presents the results of laboratory model testing of...

متن کامل

Symmetry and Structure in Twist-Hinged Dissections of Polygonal Rings and Polygonal Anti-Rings

A geometric dissection is a cutting of a geometric figure into pieces that we can rearrange to form another figure. Twist-hinged dissections have the amazing property that all pieces are connected by special hinges that allow the one figure to be converted to the other by means of twists. This paper explores such dissections for ringlike figures based on regular polygons. The twist-hinged disse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 97-A  شماره 

صفحات  -

تاریخ انتشار 2014